Math, asked by kumarpranay1703, 7 months ago

Cos^3A+sin^3A/CosA+SinA+Cos^3A-Sin^3A/CosA-SinA=k​

Answers

Answered by tsushma010
2

Answer:

LHS:-

=\bold{\frac{(cosA+sinA)(cos^2+sin^2a-sinA.cosA)}{cosA+sinA} +\frac{(cosA-sinA)(sin^2A+cos^2A+sinA.cosA)}{cosA-sinA} }=

cosA+sinA

(cosA+sinA)(cos

2

+sin

2

a−sinA.cosA)

+

cosA−sinA

(cosA−sinA)(sin

2

A+cos

2

A+sinA.cosA)

\begin{lgathered}=\bold{cos^2A+sin^2A-sinA.cosA+sin^2A+cos^2A-sinA.cosA}\\=\bold{1+1}\\=\bold{2=RHS}\end{lgathered}

=cos

2

A+sin

2

A−sinA.cosA+sin

2

A+cos

2

A−sinA.cosA

=1+1

=2=RHS

Similar questions