cos ( π/4-A)-cos (π/4+4)=√2sinA
Answers
Answered by
1
Since cosC-cosD = -sin[(C+D)/2]sin[(C-D)/2]
So
cos ( π/4-A)-cos (π/4+A) = -sin[(π/4-A+π/4+A)/2]sin[(π/4-A-π/4-A)/2]
= -sin[(π/2)/2]sin[(-2A)/2]
= sin(π/4)sin(A) { since sin(-θ) = -sinθ ]
= (1/√2)sinA [ sin(π/4) = 1/√2]
cos ( π/4-A)-cos (π/4+A) = sinA/√2
Similar questions