Math, asked by avipandat, 7 months ago

cos 45°÷ sec30°+ cosec30°

Answers

Answered by vandanasingh9101979
1

Answer:

2.433

Step-by-step explanation:

cos 45° = 1/√ 2

sec 30°= 2/√ 3

cosec 30°= 2

applying BODMAS rule,

1/√ 2 ÷ 2/√ 3 + 2

1/√ 2 ×√ 3/2 + 2

√ 3/4 + 2

taking the LCM,

√ 3+8/4

now put the value of √ 3

which is 1.732

1.732+8/4

9.732/4

which is

2.433

Answered by Anonymous
18

Answer:

 \huge \underline {\sf { \red{Given}}}

Cos45°÷sec30°+cosec30°

Solution:-

Cos45°÷Sec30°+Cosec30°

 \boxed{cos45 =  \frac{1}{ \sqrt{2} } }

 \boxed{sec30 =  \frac{2}{ \sqrt{3} }}

 \boxed{cosec30 = 2}

 =  \frac{1}{ \sqrt{2} }  \div  \frac{2}{ \sqrt{3} }  + 2

 =  \frac{1}{ \sqrt{2} }  \div  \frac{ \sqrt{ 3} }{2(1 \times  \sqrt{3 \:  )} }

 =  \frac{1}{ \sqrt{2} }  \div  \frac{ \sqrt{3} }{2 \sqrt{3} }

 =  \frac{1}{ \sqrt{2} }  \times  \frac{2 \sqrt{3} }{ \sqrt{ 3} }

  = \frac{2 \sqrt{3} }{ \sqrt{6} }

The value of Cos45°÷sec30°+cosec30° is 2√3/6

Similar questions