Math, asked by kriti74, 1 year ago

cos 4x + cos 3x + cos 2x / sin 4x + sin 3x + sin 2x = ?

Answers

Answered by Haziquemujtaba1
2
Making by Hazique
Answers :

L.H.S. = (cos4x + cos2x) +cos3x / (sin4x + sin2x) + sin3x

= 2cos[(4x+2x)/2].cos[(4x-2x)/2] + cos3x / 2sin[(4x+2x)/2].cos[(4x-2x)/2] + sin3x

          = 2cos3x.cosx + cos3x / 2sin3x.cosx + sin3x

          = cos3x(2cosx + 1) / sin3x(2cosx + 1)                   // Taking common

          = cos3x(2cosx + 1) / sin3x(2cosx + 1)

          = cos3x / sin3x

          = cot3x

Hence, L.H.S = R.H.S.
I can help to this question


Haziquemujtaba1: ok I give you a answers of this question
kriti74: Thank you so much..
Haziquemujtaba1: mark me as brainliest answer.
kriti74: done
Haziquemujtaba1: ok
Similar questions