Math, asked by elvis1078, 3 months ago

cos 54°-Sin 36° plz evaluate​

Answers

Answered by Anonymous
0

Required Answer :-

We have,

We have,cos54

We have,cos54 ∘

We have,cos54 ∘

We have,cos54 ∘ sin36

We have,cos54 ∘ sin36 ∘

We have,cos54 ∘ sin36 ∘

We have,cos54 ∘ sin36 ∘

We have,cos54 ∘ sin36 ∘ −

We have,cos54 ∘ sin36 ∘ − cos36

We have,cos54 ∘ sin36 ∘ − cos36 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ =

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ )

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ )

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) −

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ )

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ )

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ ) =

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ ) = cos54

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ ) = cos54 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ ) = cos54 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ ) = cos54 ∘ cos54

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ ) = cos54 ∘ cos54 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ ) = cos54 ∘ cos54 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ ) = cos54 ∘ cos54 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ ) = cos54 ∘ cos54 ∘ −

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ ) = cos54 ∘ cos54 ∘ − cos36

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ ) = cos54 ∘ cos54 ∘ − cos36 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ ) = cos54 ∘ cos54 ∘ − cos36 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ ) = cos54 ∘ cos54 ∘ − cos36 ∘ cos36

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ ) = cos54 ∘ cos54 ∘ − cos36 ∘ cos36 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ ) = cos54 ∘ cos54 ∘ − cos36 ∘ cos36 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ ) = cos54 ∘ cos54 ∘ − cos36 ∘ cos36 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ ) = cos54 ∘ cos54 ∘ − cos36 ∘ cos36 ∘ =1−1=0

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ ) = cos54 ∘ cos54 ∘ − cos36 ∘ cos36 ∘ =1−1=0 [∵sin(90

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ ) = cos54 ∘ cos54 ∘ − cos36 ∘ cos36 ∘ =1−1=0 [∵sin(90 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ ) = cos54 ∘ cos54 ∘ − cos36 ∘ cos36 ∘ =1−1=0 [∵sin(90 ∘ −θ)=cosθ,cos(90

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ ) = cos54 ∘ cos54 ∘ − cos36 ∘ cos36 ∘ =1−1=0 [∵sin(90 ∘ −θ)=cosθ,cos(90 ∘

We have,cos54 ∘ sin36 ∘ − cos36 ∘ sin54 ∘ = cos54 ∘ sin(90 ∘ −54 ∘ ) − cos36 ∘ sin(90 ∘ −36 ∘ ) = cos54 ∘ cos54 ∘ − cos36 ∘ cos36 ∘ =1−1=0 [∵sin(90 ∘ −θ)=cosθ,cos(90 ∘ −θ)=sinθ]

Have a great day ahead mate ❤️

Answered by RvP10
1

Answer:

cos 54°-Sin 36°=0

Step-by-step explanation:

using property cos(90-x) = sinx

cos 54 = cos(90-36) =sin 36

=cos 54°-Sin 36°

=sin36 - sin36

=0

Similar questions