Math, asked by chavanvarsha731, 1 year ago

Cos 70 degree divided by sin 20 degree Plus cos 55 degree * cosec 35 degree divided by tan 5 degree into tan 25 degree into tan 65 degree into tan 85 degree is equal to 2

Answers

Answered by aquialaska
11

Answer:

To prove:  

 \frac{cos70^{\circ}}{sin20^{\circ}}+\frac{cos55^{\circ}\times cosec35^{\circ}}{tan5^{\circ}\times tan25^{\circ}\times tan65^{\circ}\times tan85^{\circ}}=2

Consider,

LHS=\frac{cos70^{\circ}}{sin20^{\circ}}+\frac{cos55^{\circ}\times cosec35^{\circ}}{tan5^{\circ}\times tan25^{\circ}\times tan65^{\circ}\times tan85^{\circ}}

=\frac{cos70^{\circ}}{sin(90^{\circ}-70^{\circ})}+\frac{cos55^{\circ}\times\frac{1}{sin35^{\circ}}}{tan5^{\circ}\times tan25^{\circ}\times tan(90^{\circ}-25^{\circ})\times tan(90^{\circ}-5^{\circ})}

=\frac{cos70^{\circ}}{sin(90^{\circ}-70^{\circ})}+\frac{cos55^{\circ}\times\frac{1}{sin(90^{\circ}-55^{\circ})}}{tan5^{\circ}\times tan25^{\circ}\times tan(90^{\circ}-25^{\circ})\times tan(90^{\circ}-5^{\circ})}

Now use trigonometry complementary angle,

       sin ( 90° - x ) = cos x  and  tan ( 90° - x ) = cot x , we get

=\frac{cos70^{\circ}}{cos70^{\circ}}+\frac{cos55^{\circ}\times\frac{1}{cos55^{\circ}}}{tan5^{\circ}\times tan25^{\circ}\times cot25^{\circ}\times cot5^{\circ}}

=1+\frac{1}{tan5^{\circ}\times tan25^{\circ}\times cot25^{\circ}\times cot5^{\circ}}

Now use, result, tan\theta\times cot\theta=1 we get

=1+\frac{1}{1}

= 1 + 1

= 2

⇒ LHS = RHS

Hence Proved

Answered by mohana8585
5

Answer:

Hope it helps u ☺☺

Step-by-step explanation:

Its easy if u understand it properly!! so pls understand nd write!!

All the best!!

Attachments:
Similar questions