cos 9 + sin9 theta is equal to root 2 Sin 54 theta
Answers
Answered by
3
Answer:
Cos(9°) + Sin(9°) = √2 Sin(54°)
Step-by-step explanation:
Cos(9°) + Sin(9°) = √2 Sin(54°)
Squaring both sides
=> (Cos(9°) + Sin(9°))² = (√2 Sin(54°))²
=> Cos²(9°) + Sin²(9°) + 2Cos(9°)Sin(9°) = 2Sin²(54°)
Cos²x + Sin²x = 1
=> 1 + 2Cos(9°)Sin(9°) = 2Sin²(54°)
=> 2Cos(9°)Sin(9°) = Sin²(54°) + Sin²(54°) - 1
=> 2Cos(9°)Sin(9°) = Sin²(54°) - (1 - Sin²(54°))
=> 2Cos(9°)Sin(9°) = Sin²(54°) - (Cos²(54°))
=> 2Cos(9°)Sin(9°) = - ((Cos²(54°) - Sin²(54°) )
Sin2x = 2SinxXosx & Cos2x = Cos²x - Sin²x
=> Sin(18°) = -Cos(108°)
=> Sin(18°) = -Cos(90° + 18°)
Cos(90° + x) = -Sinx
=> Sin(18°) = -(-Sin(18°))
=> Sin(18°) = Sin(18°)
=> LHS = RHS
QED
Similar questions