Math, asked by ojitoinams5028, 1 year ago

Cos(90-theta)/1+sin(90-theta)+1+sin(90-theta)/cos(90-theta)=2cosectheta

Answers

Answered by B509
57

Answer:

Step-by-step explanation:

Ok it's done

Attachments:
Answered by guptasingh4564
36

∴ Hence proved.

Step-by-step explanation:

Given;

Proved that  \frac{cos(90-\theta)}{1+sin(90-\theta)} +\frac{1+sin(90-\theta)}{cos(90-\theta)} =2cosec\theta

∴ LHS:

\frac{cos(90-\theta)}{1+sin(90-\theta)} +\frac{1+sin(90-\theta)}{cos(90-\theta)}

=\frac{sin\theta}{1+cos\theta} +\frac{1+cos\theta}{sin\theta}   (∵cos(90-\theta)=sin\theta and sin(90-\theta)=cos\theta )

=\frac{sin^{2} \theta+(1+cos\theta)^{2} }{sin\theta(1+cos\theta)}

=\frac{sin^{2} \theta+1+2cos\theta +cos^{2} \theta }{sin\theta(1+cos\theta)}

=\frac{1+1+2cos\theta}{sin\theta(1+cos\theta)}  (∵ sin^{2} \theta+cos^{2} \theta=1 )

=\frac{2(1+cos\theta)}{sin\theta(1+cos\theta)}

=\frac{2}{sin\theta}   (By cancel (1+cos\theta) in numerator and denominator )

=2cosec \theta (∵ \frac{1}{sin\theta} =cosec\theta )

=RHS

∴ Hence proved.

Similar questions