cos 9A_cos5A÷sin17A_sin3A=_2sin2A÷cos10A
Answers
Answered by
0
Answer:
Step-by-step explanation:
sin11AsinA+sin7Asin3A/cos11AsinA+cos7Asin3A
=2sin11AsinA+2sin7Asin3A/2cos11AsinA+2cos7Asin3A
=[{cos(11A-A)-cos(11A+A)}+{cos(7A-3A)-cos(7A+3A)}]/
[{sin(11A+A)-sin(11A-A)}+{sin(7A+3A)-sin(7A-3A)}]
=(cos10A-cos12A+cos4A-cos10A)/(sin12A-sin10A+sin10A-sin4A)
=(cos4A-cos12A)/(sin12A-sin4A)
=[2sin(4A+12A)/2sin(12A-4A)/2]/[2cos(12A+4A)/2sin(12A-4A)/2]
=sin8Asin4A/cos8Asin4A
=sin8A/cos8A
=tan8A (Proved)
Similar questions
Geography,
6 months ago
Science,
6 months ago
Hindi,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago
Business Studies,
1 year ago