Math, asked by akul446, 11 months ago

cos A / 1 + sin A + 1 + sinA / cos A
= 2 sec A
Prove that L H S = R H S​

Answers

Answered by Anonymous
13

{\underline{\underline{\large{\mathtt{QUESTION:-}}}}}

Prove that,

\sf{\frac{cosA}{1+sinA}+\frac{1+sinA}{cosA}=\:2secA}

{\underline{\underline{\large{\mathtt{SOLUTION:-}}}}}

Taking L.H.S ,

\sf{\frac{cosA}{1+sinA}+\frac{1+sinA}{cosA}}

\implies\sf\frac{cos^2A+(1+sinA)^2}{cosA\:(1+sinA)}

★Apply (a+b)² = a²+2ab+b²★

\implies\sf\frac{cos^2A+1+2sinA+sin^2A}{cosA\:(1+sinA)}

\implies\sf\frac{cos^2A+sin^2A+2sinA+1}{cosA\:(1+sinA)}

★We know sin²A +cos²A = 1★

\implies\sf\frac{1+2sinA+1}{cosA\:(1+sinA)}

\implies\sf\frac{2+2sinA}{cosA\:(1+sinA)}

\implies\sf\frac{2(1+sinA)}{cosA\:(1+sinA)}

\implies\sf\frac{2}{cosA\:}

\implies\sf{2secA\:(Proved)}

L.H.S = R.H.S ( Proved)

Answered by silentlover45
0

\large\underline\mathrm{Solution}

  \huge \mathfrak{L.H.S:-}

\implies cosA/1+ sinA + 1+ sinA/cosA

\implies cos²A + (1+ sinA)²/cos A(1 + sinA)

\large\underline\mathrm{Using \: \: formula.(a \: + \: b)² \: = \: a² \: + \: 2ab \: + \: b²}

\implies cos²A + 1 + 2sinA + sin²A/cosA (1 + sinA)

\implies cos²A + sin²A + 2sinA + 1 / cosA (1 + sinA)

\large\underline\mathrm{Now, \: [ \: sin²A \: + \: cos²A]}

\implies 1 + 2sinA + 1 / cosA(1 + sinA)

\implies 2 + 2sinA / cosA(1 + sinA)

\implies 2(1 + sinA)/cos(1 + sinA)

\implies 2/cosA

\implies 2secA

\large\underline\mathrm{L.H.L \: = \: R.H.S}

\large\underline\mathrm{Hope \: it \: helps \: you \: plz \: mark \: me \: brainlist}

Similar questions