cos^A/2+cos^B/2-cos^C/2=2cosA/2×cosB/2×sinC/2
Answers
Answered by
6
hello dude
2 answers · Mathematics
Best Answer
Let us assume that A+B+C=180 degrees ( pie radian)
L.H.S= cos square A/2 +cos square B/2 +cos square C/2
First take the cos square A/2 + cos square B/2 ( from L.H.S)
By using the formula cos square A/2= (1+ cos A)/2 in cos square A/2 +cos square B/2, we get,
(1+cos A)/2 +( 1+cos B)/2 [ PUTTING THIS IN L.H.S]
THEN,
(1+cos A)/2 + (1+ cos B)/2+ cos square C/2
taking 1 and 1/2 as common from (1+cos A)/2 + (1+ cos B)/2, then
=1+1/2 (cos A +cos B) + cos square C/2
now we can use cos C + cos D= 2 cos(C+D)/2. cos (C-D)/2 formula in the above statement, THEN,
=1+ 1/2[2cos (A+B)/2 . cos (A-B)/2 ] + cos square C/2
as we know A+B+C= 180 degrees or pie radian ,
=1+ cos (180/2 - C/2) cos (A-B)/2 + cos square C/2
=1+ sin C/2 . cos (A-B)/2 + 1- sin square C/2
=2+ sin C/2 [ cos(A-B)/2 - sin C/2]
=2+ sin C/2 { cos (A-B)/2 - sin [ 180/2-(A+B)/2 ]}
=2+ sin square C/2 [ cos (A-B)/2 - cos (A+B)/2]
=2+ sin C/2 . 2sin A/2 sin B/2 sin C/2
= 2+ 2 sin A/2 sin B/2 sin C/2
2 answers · Mathematics
Best Answer
Let us assume that A+B+C=180 degrees ( pie radian)
L.H.S= cos square A/2 +cos square B/2 +cos square C/2
First take the cos square A/2 + cos square B/2 ( from L.H.S)
By using the formula cos square A/2= (1+ cos A)/2 in cos square A/2 +cos square B/2, we get,
(1+cos A)/2 +( 1+cos B)/2 [ PUTTING THIS IN L.H.S]
THEN,
(1+cos A)/2 + (1+ cos B)/2+ cos square C/2
taking 1 and 1/2 as common from (1+cos A)/2 + (1+ cos B)/2, then
=1+1/2 (cos A +cos B) + cos square C/2
now we can use cos C + cos D= 2 cos(C+D)/2. cos (C-D)/2 formula in the above statement, THEN,
=1+ 1/2[2cos (A+B)/2 . cos (A-B)/2 ] + cos square C/2
as we know A+B+C= 180 degrees or pie radian ,
=1+ cos (180/2 - C/2) cos (A-B)/2 + cos square C/2
=1+ sin C/2 . cos (A-B)/2 + 1- sin square C/2
=2+ sin C/2 [ cos(A-B)/2 - sin C/2]
=2+ sin C/2 { cos (A-B)/2 - sin [ 180/2-(A+B)/2 ]}
=2+ sin square C/2 [ cos (A-B)/2 - cos (A+B)/2]
=2+ sin C/2 . 2sin A/2 sin B/2 sin C/2
= 2+ 2 sin A/2 sin B/2 sin C/2
Similar questions