Math, asked by noahhopkins135, 19 days ago

cos(a/2)=+/-sqrt1+cosa/2

Answers

Answered by mathdude500
4

Question :-

Prove that

\rm\:{cos}\dfrac{a}{2}\:=\:\pm \:\sqrt{\dfrac{1 + cosa}{2}}

\large\underline{\sf{Solution-}}

We know that,

\rm \: cos(x + y) = cosx \: cosy \:  -  \: sinx \: siny

Now, Replace x = y = a/2, we get

\rm \: cos\bigg(\dfrac{a}{2}+\dfrac{a}{2}\bigg) = cos\dfrac{a}{2}\times  cos\dfrac{a}{2}\:  -  \: sin\dfrac{a}{2} \times  sin\dfrac{a}{2}

\rm \: cosa \:  =  \:  {cos}^{2}\dfrac{a}{2} \:  -  \:  {sin}^{2}\dfrac{a}{2}

We know,

\boxed{\tt{  \:  \:  {sin}^{2}x +  {cos}^{2}x = 1 \: \:  }} \\

So, using this, we get

\rm \: cosa \:  =  \:  {cos}^{2}\dfrac{a}{2} \: -  \:  \bigg(1 \:  -  \:  {cos}^{2}\dfrac{a}{2}\bigg)

\rm \: cosa \:  =  \: 2{cos}^{2}\dfrac{a}{2} \: -  \:1

\rm \: cosa \:  +  \: 1 \:  =  \: 2{cos}^{2}\dfrac{a}{2}

\rm \:  {cos}^{2}\dfrac{a}{2} \:  =  \:  \dfrac{1 + cosa}{2}

\rm\implies \:\boxed{\tt{  \: \rm \:  {cos}\dfrac{a}{2} \:  =  \:    \pm \: \sqrt{\dfrac{1 + cosa}{2}} \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{  \: sin2x = 2sinxcosy =  \frac{2tanx}{1 +  {tan}^{2}x} \: }} \\

\boxed{\tt{ cos2x =  {cos}^{2}x -  {sin}^{2}x = 1 -  {2sin}^{2}x =  {2cos}^{2}x - 1 \: }} \\

\boxed{\tt{  \: tan2x =  \frac{2tanx}{1 -  {tan}^{2}x } \: }} \\

\boxed{\tt{  \: sin3x = 3sinx -  {4sin}^{3}x \: }} \\

\boxed{\tt{  \: cos3x =  {4cos}^{3}x - 3cosx \: }} \\

\boxed{\tt{  \: tan3x =  \frac{3tanx -  {tan}^{3}x}{1 -  {3tan}^{2}x } \: }} \\

\begin{gathered}\boxed{\begin{array}{c|c} \bf Function & \bf Range \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf y = sinx & \sf   - 1 \leqslant y \leqslant 1\\ \\ \sf y = cosx & \sf  - 1 \leqslant y \leqslant 1 \\ \\ \sf y = tanx & \sf y \:  \in \: ( -  \infty , \infty )\\ \\ \sf y = cosec & \sf y \leqslant  - 1 \:  \: or \:  \: y \geqslant 1\\ \\ \sf y = secx & \sf y \leqslant  - 1 \:  \: or \:  \: y \geqslant 1\\ \\ \sf y = cotx & \sf y \:  \in \: ( -  \infty , \infty ) \end{array}} \\ \end{gathered} \\

Answered by jaswasri2006
2

refer the given attachment

Attachments:
Similar questions