Cos(a-b)+cos(b-c)+cos(c-a)
Answers
Combine the first two terms and expand the last term using trigonometric identities.
2 Cos (a-c)/2 cos (a-2b+c)/2 + 2 cos^2 (a –c)/2 - 1
2 cos (a-c)/2 [ cos (a-2b+c)/2 + cos (a-c)/2 ] – 1
4 cos (a-c)/2 cos (a-b) cos (c-b) - 1
=======================================
Another simplification:
a-b + b –c + c - a = 0 => a-c = (a-b) + (b –c)
=> Cos(a-b)+ cos(b-c) + [ cos (a-b) cos(b-c) – sin (a-b) sin (b-c) ]
=> Cos(a-b) (1 + cos(b-c) ) + cos (b-c) – sin(a-b) sin(b-c)
=> 2 Cos(a-b) cos^2 (b-c)/2 + 2 cos^2 (b-c)/2 - sin(a-b) sin(b-c) -1
=> 4 cos^2 (b-c)/2 cos^2 (a-b)/2 - 4 cos(a-b)/2 cos(b-c)/2 sin(a-b/2) sin(b-c)/2 -1
=> 4 cos (b-c)/2 cos(a-b)/2 [cos (b-c)/2 cos(a-b)/2 - sin(a-b/2) sin(b-c)/2 ] – 1
=> 4 cos (b-c)/2 cos(a-b)/2 cos(a-c)/2 – 1