cos(a-b), cosa, cos(a+b) are in H.P. then find value of cosa/cos(b/2)
Answers
Answered by
15
as they are in H.P.
applying H.P. formula
1/cos(a+b) – 1/cosa = 1/cosa – 1/cos(a-b)
[cosa – cos(a+b)] / cos(a+b).cosa = [cos(a-b) – cosa] / cos(a-b).cosa
cos(a-b)[cosa – cos(a+b)] = cos(a+b)[cos(a-b) – cosa]
cos(a-b).cosa – [cos(a-b).cos(a+b)] = [cos(a-b).cos(a+b)] – cos(a+b).cosa
cos(a-b).cosa + cos(a+b).cosa = 2.cos(a-b).cos(a+b)
cosa [cos(a-b) + cos(a+b)] = 2(cos2a – sin2b)
cosa.(2.cosa.cosb) = 2(cos2a – sin2b)
cos2a.cosb – cos2a = -sin2b
cos2a.(cosb – 1) = -(1 – cos2b)
cos2a.(cosb – 1) = (cosb – 1)(cosb + 1)
cos2a – 1 = cosb
Answer
cos(b/2)÷2cosa•cos^2(b/2)
applying H.P. formula
1/cos(a+b) – 1/cosa = 1/cosa – 1/cos(a-b)
[cosa – cos(a+b)] / cos(a+b).cosa = [cos(a-b) – cosa] / cos(a-b).cosa
cos(a-b)[cosa – cos(a+b)] = cos(a+b)[cos(a-b) – cosa]
cos(a-b).cosa – [cos(a-b).cos(a+b)] = [cos(a-b).cos(a+b)] – cos(a+b).cosa
cos(a-b).cosa + cos(a+b).cosa = 2.cos(a-b).cos(a+b)
cosa [cos(a-b) + cos(a+b)] = 2(cos2a – sin2b)
cosa.(2.cosa.cosb) = 2(cos2a – sin2b)
cos2a.cosb – cos2a = -sin2b
cos2a.(cosb – 1) = -(1 – cos2b)
cos2a.(cosb – 1) = (cosb – 1)(cosb + 1)
cos2a – 1 = cosb
Answer
cos(b/2)÷2cosa•cos^2(b/2)
Similar questions