Math, asked by rkvgmailcom6737, 11 months ago

Cos A - sin A +1/cosA +sin A -1 = cosec A + cot A prove

Answers

Answered by sachinarora2001
21

✨ QUESTION ✨

______________________

 \frac{ \cos( \alpha)  -  \sin( \alpha )  + 1}{ \cos( \alpha ) +  \sin( \alpha )  - 1 }  =  \csc( \alpha )  +  \cot( \alpha )  \\  \ \\

_______________

IDENTITY USED

  \color{red} \boxed{\csc {}^{2} \alpha   =  > 1 +  \cot {}^{2}   \alpha }

_______________

L.H.S

 \frac{ \cos( \alpha )  -  \sin( \alpha ) + 1 }{ \cos( \alpha )  +  \sin( \alpha ) - 1 }  =  \csc( \alpha )  +  \cot( \alpha )

divide both numerator and denominator by sin A

 \frac{ \frac{ \cos( \alpha ) }{ \sin( \alpha )  } -  \frac{ \sin( \alpha ) }{ \sin( \alpha ) }  +  \frac{1}{ \sin( \alpha ) }   }{ \frac{ \cos( \alpha ) }{ \sin( \alpha ) } +  \frac{ \sin( \alpha ) }{ \sin( \alpha ) }   -  \frac{1}{ \sin( \alpha ) } }  \\

 =  >  >  \frac{ \cot( \alpha )  - 1 +   \csc( \alpha )  }{ \cot( \alpha )  + 1 -  \csc( \alpha ) }  \\  \\  =  >  >  \frac{ (\cot( \alpha ) +   \csc( \alpha ))  - 1}{( \cot( \alpha ) + 1 -  \csc( \alpha )  )}  \\  \\  =  >  >  \frac{ \cot( \alpha )  +  \csc( \alpha )  -  \csc ^{2}  \alpha  -  \cot ^{2} \alpha   }{ \cot( \alpha )  + 1 -  \csc( \alpha ) }

 \boxed{1 =  >  \csc ^{2} \alpha  -  \cot ^{2}    \alpha }

Use (-b²)=>{a-b}{a+b}

 a=  >  >  \cot( \alpha )  \\  \\ b =  >  >  \csc( \alpha )

 \frac{ \cot( \alpha )  +  \csc( \alpha )  - ( \csc( \alpha )  -  \cot( \alpha )  \: )( \csc( \alpha )  +  \cot( \alpha )  \: )}{ \cot( \alpha  )  + 1 -  \csc( \alpha ) }

 =  >  >   \frac{ \cot( \alpha ) +  \csc( \alpha )(1 -  (\csc( \alpha ) -  \cot( \alpha ) \:  )  \: )  }{ \cot( \alpha ) + 1  -  \csc( \alpha )  }

 =  >  >  \frac{ \cot( \alpha )  +  \csc( \alpha ) - ( \:  \: 1 -  \csc( \alpha )  +  \cot( \alpha )   \:  \: )}{ \cot( \alpha ) + 1 -  \csc( \alpha )  }

 =  >  >  \frac{ \cot( \alpha )  +  \csc( \alpha ) \:  \: ( \:  \:  \cot( \alpha  )  + 1 -  \csc( \alpha )   \:  \: )}{ \cot( \alpha )  + 1 -  \csc( \alpha ) }

 =  >  >   \color{blue} \boxed{\csc( \alpha )  +  \cot( \alpha ) }

Hence proved...

☺️

Answered by lublana
8

Answer with Step-by-step explanation:

LHS

\frac{cos A-sin A+1}{cos A+sin A-1}

Divide numerator and denominator by sin A

\frac{\frac{cos A-sin A+1}{sin A}}{\frac{cos A+sin A-1}{sin A}}

\frac{\frac{cos A}{sinA}-1+\frac{1}{sinA}}{\frac{cos A}{sinA}+1-\frac{1}{sinA}}

We know that

 cot x=\frac{cos x}{sinx},cosec x=\frac{1}{sinx}

By using the formula

\frac{cot A-1+cosec A}{cot A+1-cosec A}

\frac{cot A+cosec A-1}{cot A+1- cosec A}

We know that

 cosec^2 A-cot^2 A=1

Using the identity

\frac{(cot A+cosec A)-(cosec^2A-cot^2 A)}{cotA+1-cosec A}

\frac{(cosec A+cot A)-(cosec A+cot A)(cosecA-cot A)}{cot A+1-cosec A}

Using identity:a^2-b^2=(a+b)(a-b)

\frac{(cosecA+cot A)(1-cosec A+cot A)}{cot A+1-cosec A}

cot A+cosec A=RHS

Hence, proved

#Learns more:

https://brainly.in/question/13876282:Answered By Sprao

Similar questions