Math, asked by Anuragmishrap, 1 year ago

Cos A upon 1 + sin a + 1 + sin a upon Cos A equal to 2 sec A


Anuragmishrap: helping answer

Answers

Answered by Anonymous
25
hope this helps you ☺☺
Attachments:
Answered by Nereida
68

\huge\star{\red{\underline{\mathfrak{Answer :-}}}}

Question :-

  \dfrac{ \cos \: A }{1 +  \sin \: A} +  \frac{1 +  \sin \: A}{ \cos \: A} = 2 \sec \: A

Let's prove this...!!!

LHS :-

 \leadsto {\dfrac{ {( \cos \: A )}^{2}  +  {(1 +  \sin \: A) }^{2} }{(1 +  \sin \: A)( \cos \: A) }}

\leadsto {\dfrac{ { (\cos \: A) }^{2} + 1 +  { (\sin \: A) }^{2}  + 2 \sin \: A  }{ \cos A + (\sin A )(\cos A) } }

\leadsto {\dfrac {1 - \cancel {{sin A}^{2}} + 1 +\cancel {{sin A}^{2}} + 2 \sin A}{\cos A + (\sin A)(\cos A)}}

\leadsto{\dfrac{2 + 2 \sin A}{\cos A + (\sin A)(\cos A)}}

\leadsto {\dfrac {2  \cancel{(1 + \sin A)}}{ \cos A \cancel{(1 + \sin A)}}}

\leadsto {\dfrac {2}{\cos A}}

\leadsto {2 \sec A}

\therefore {Hence\:proved}

Similar questions