Math, asked by pawanchhikara2p33xdl, 1 year ago

cos alpha + cos beta equal to b and sin alpha + sin beta equal to a then prove that cos (alpha + beta) equal to b square minus A square upon B square + A square

Answers

Answered by MaheswariS
2

\textbf{Given:}

a=sin\,\alpha+sin\,\beta

b=cos\,\alpha+cos\,\beta

\textbf{To prove:}

cos(\alpha+\beta)=\dfrac{b^2-a^2}{b^2+a^2}

\textbf{Solution:}

\text{Consider,}

\dfrac{b^2-a^2}{b^2+a^2}

=\dfrac{(cos\,\alpha+cos\,\beta)^2-(sin\,\alpha+sin\,\beta)^2}{(cos\,\alpha+cos\,\beta)^2+(sin\,\alpha+sin\,\beta)^2}

=\dfrac{cos^2\alpha+cos^2\beta+2\,cos\,\alpha\,cos\,\beta-sin^2\alpha-sin^2\beta-2\,sin\,\alpha\,sin\,\beta}{cos^2\alpha+cos^2\beta+2\,cos\,\alpha\,cos\,\beta+sin^2\alpha+sin^2\beta+2\,sin\,\alpha\,sin\,\beta}

=\dfrac{(cos^2\alpha--sin^2\alpha)+(cos^2\beta-sin^2\beta)+2(cos\,\alpha\,cos\,\beta-\sin\,\alpha\,sin\,\beta)}{(cos^2\alpha+sin^2\alpha)+(cos^2\beta+sin^2\beta)+2(cos\,\alpha\,cos\,\beta+\sin\,\alpha\,sin\,\beta)}

\text{Using the following identities,}

\boxed{\bf\,cos2A=cos^2A-sin^2A}

\boxed{\bf\,cos^2A+sin^2A=1}

\boxed{\bf\,cos(A+B)=cosA\,cosB-sinA\,sinB}

\boxed{\bf\,cos(A-B)=cosA\,cosB+sinA\,sinB}

=\dfrac{cos\,2\alpha+cos\,2\beta+2\,cos(\alpha+\beta)}{1+1+2\,cos(\alpha-\beta)}

=\dfrac{(cos\,2\alpha+cos\,2\beta)+2\,cos(\alpha+\beta)}{2+2\,cos(\alpha-\beta)}

\text{Using the formula,}

\boxed{\bf\,cos\,C+cos\,D=2\,cos(\frac{C+D}{2})\,cos(\frac{C+D}{2})}

=\dfrac{2\,cos(\alpha+\beta)\,cos(\alpha-\beta)+2\,cos(\alpha+\beta)}{2+2\,cos(\alpha-\beta)}

=\dfrac{cos(\alpha+\beta)(2\,cos(\alpha-\beta)+2)}{2+2\,cos(\alpha-\beta)}

=cos(\alpha+\beta)

\implies\bf\,cos(\alpha+\beta)=\dfrac{b^2-a^2}{b^2+a^2}

Find more:

If cosec theta-sin theta =a^3 and sec theta -cos theta = b^3, prove that a^2b^2 (a² +b²)=1

https://brainly.in/question/15070557

Tan theta = x sin Alfa + y sin Beta / x cos Alfa + y cos Beta, prove that x sin ( theta – Alfa) + y sin ( theta – Beta) = 0

https://brainly.in/question/16834040

Similar questions