Math, asked by kritikarao456, 11 months ago

cos e
sin 0
1-tan 0 1 - coto
+
= cos 0 + sin 6​

Answers

Answered by sandy1816
4

Answer:

</p><p>{\green{\underline{\underline{\huge{\mathfrak\pink{your\:answer\:attached\:in\:the\:photo}}}}}}

Attachments:
Answered by tahseen619
13

To prove:

 \dfrac{\cos\theta}{1 -  \tan\theta}  +  \dfrac{ \sin\theta}{1 -  \cot\theta}=  \cos\theta + \sin\theta

Solution:

L.H.S

\dfrac{\cos\theta}{1 -  \tan\theta}  +  \dfrac{ \sin\theta}{1 -  \cot\theta}   \\  \\  = \dfrac{\cos\theta}{1 -   \frac{  \sin\theta }{ \cos\theta} }  +  \dfrac{ \sin}{1 -   \frac{\cos}{\sin\theta} } \\  \\  =  \dfrac{\cos\theta}{  \frac{\cos\theta - \sin\theta}{ \cos\theta } }  +  \dfrac{ \sin\theta}{  \frac{\sin\theta -  \cos\theta}{ \sin\theta}} \\  \\  =  \frac{ { \cos }^{2} \theta}{ \cos\theta -  \sin\theta }   +  \frac{ { \sin }^{2} \theta}{ \sin\theta - \cos\theta }  \\  \\  =  \frac{ { \cos}^{2}\theta }{ \cos\theta -  \sin\theta } -\frac{ { \sin }^{2}\theta }{  \cos\theta -  \sin\theta  }  \\  \\  =  \frac{ { \cos}^{2}\theta  -  \sin{}^{2}\theta }{ \cos\theta -  \sin\theta }   \\  \\  = \frac{ ( { \cos\theta}   +   \sin \theta)({ \cos\theta}  -  \sin\theta)}{( \cos\theta -  \sin\theta )} \\  \\  =  \cos\theta  +   \sin\theta

Hence, L.H.S = R.H.S [Proved]

Formula Used

a² - b² = (a + b)(a - b)

tan ∅ = sin ∅/cos ∅

cot ∅ = cos ∅/sin ∅

Similar questions