cos(n+1)π.cos(n-1)π-sin(n+1)π.sin(n-1)π
Answers
Answered by
1
Answer:
Cosπ.2n
Step-by-step explanation:
Cos(n+1)π.Cos(n-1)π - Sin(n+1)π.Sin(n-1)
In this expression we extract common π
= π{Cos(n+1).Cos(n-1) - Sin(n+1).Sin(n-1)}
We know that ,
CosA.CosB - Sin A.SinB = Cos(A+B) Using this formula☝️☝☝☝☝☝☝☝
= π.Cos(n+1+n-1)
= π.Cos(2n)
= Cosπ.2n
Similar questions