Cos power 6 theta - sin power 6 theta = cos2theta into 1-1/4 sin square theta
Answers
Answered by
0
Answer:
Step-by-step explanation:
Cos⁶θ - Sin⁶θ
= (Cos²θ )³ - (Sin²θ)³
//a³ - b³ = (a-b)(a²+ab+b²)
= (Cos²θ - Sin²θ)(Cos⁴θ +Cos²θSin²θ+ Sin⁴θ)
= (Cos²θ - Sin²θ)(Cos⁴θ +Sin⁴θ + Cos²θSin²θ)
= Cos2θ[(Cos²θ+Sin²θ)² - 2Cos²θSin²θ + Cos²θSin²θ]
= Cos2θ[1 - Cos²θSin²θ]
= Cos2θ[1 - (2CosθSinθ)²/4]
= Cos2θ [ 1 - 1/4*Sin²2θ]
= R.H.S
Hence proved.
Similar questions
Political Science,
6 months ago
Math,
6 months ago
Physics,
11 months ago
Social Sciences,
11 months ago
Math,
1 year ago
Physics,
1 year ago