Math, asked by laboriousgamer, 1 year ago

cos(Q+R-P) + cos(R+P-Q) + cos(P+Q-R) = 1 + 4cosP. cosQ. cosR when P=+Q+R = 180* where *=degrees.

Answers

Answered by MaheswariS
5

\textbf{Given:}

P+Q+R=180^{\circ}

\textbf{To prove:}

cos(Q+R-P)+cos(R+P-Q)+cos(P+Q-R)=1+4\,cos\,P\,cos\,Q\,cos\,R

\text{Consider,}

cos(Q+R-P)+cos(R+P-Q)+cos(P+Q-R)

\text{Using the identity,}

\boxed{\bf\,cosC+cosD=2\,cos(\frac{C+D}{2})\,,cos(\frac{C+D}{2})}

=2\,cos(\frac{Q+R-P+R+P-Q}{2})\,cos(\frac{Q+R-P-R-P+Q}{2})+cos(P+Q-R)

=2\,cos\,R\,cos(\frac{2Q-2P}{2})+cos(P+Q+R-2R)

=2\,cos\,R\,cos(Q-P)+cos(180^{\circ}-2R)

=2\,cos\,R\,cos(-(P-Q))-cos2R

=2\,cos\,R\,cos(P-Q)-[2cos^2R-1]

=2\,cos\,R\,cos(P-Q)-2cos^2R+1

=1+2\,cos\,R[cos(P-Q)-cosR]

=1+2\,cos\,R[cos(P-Q)-cos(180^{\circ}-(P+Q))]

=1+2\,cos\,R[cos(P-Q)+cos(P+Q)]

\text{Using the identity,}

\boxed{\bf\,cos(A+B)+cos(A-B)=2\,cos\,A\;cosB}

=1+2\,cos\,R[2\,cos\,P\,cos\,Q]

=1+4\,cos\,P\,cos\,Q\,cos\,R

\therefore\boxed{\bf\,cos(Q+R-P)+cos(R+P-Q)+cos(P+Q-R)=1+4\,cos\,P\,cos\,Q\,cos\,R}

Find more:

If A+B+C = 180, prove that: CosA + Cos B + cos C = 1+4sinA/2 sinB/2 sinC/2

https://brainly.in/question/15268184

2.Cos 10A + cos 8A + 3cos 2A + 3cos 4A = 8cos A cos^3 3A

https://brainly.in/question/4290873

Similar questions