Math, asked by deadpoolrtg, 1 year ago

cos(sin^-1 1/4 + sec^-1 4/3) evaluate ​

Attachments:

Answers

Answered by brunoconti
12

Answer:

Step-by-step explanation:

Attachments:
Answered by harendrachoubay
11

The vaue of \cos(\sin^{-1} \dfrac{1}{4} +\sec^{-1} \dfrac{4}{3}) is equal to =\dfrac{3\sqrt{15}-\sqrt{7}}{16}.

Step-by-step explanation:

We have,

\cos(\sin^{-1} \dfrac{1}{4} +\sec^{-1} \dfrac{4}{3})    ......(1)

To find, the value of \cos(\sin^{-1} \dfrac{1}{4} +\sec^{-1} \dfrac{4}{3})=?

Let \sin^{-1} \dfrac{1}{4}=\theta

\sin \theta =\dfrac{1}{4}

\cos \theta =\dfrac{\sqrt{16-1} }{4}=\dfrac{\sqrt{15}}{4}

Now, (1) becomes

\cos(\cos^{-1} \dfrac{\sqrt{15}}{4} +\cos^{-1} \dfrac{3}{4})

=\cos(\dfrac{\sqrt{15}}{4}.\dfrac{3}{4} -\sqrt{(1-\dfrac{15}{16})(1-\dfrac{9}{16})}

=\cos(\cos^{-1}(\dfrac{\sqrt{15}}{4}.\dfrac{3}{4} -\sqrt{(\dfrac{1}{16})(\dfrac{\sqrt{7}}{16})})

=\cos(\cos^{-1}(\dfrac{3\sqrt{15}}{16} -\sqrt{\dfrac{\sqrt{7}}{16}})

=\dfrac{3\sqrt{15}-\sqrt{7}}{16}

Hence, the vaue of \cos(\sin^{-1} \dfrac{1}{4} +\sec^{-1} \dfrac{4}{3}) is equal to =\dfrac{3\sqrt{15}-\sqrt{7}}{16}.

Similar questions