Math, asked by bipulroy2722, 1 year ago

Cos:sin=13:12 find the value of tantheta,cosec theta and costheta

Answers

Answered by saurabhsemalti
25
let cos α=13k
sinα=12k
sin^ 2α+cos^2α=1
k^2(12^2+13^2)=1
k=1/√(144+169)
k=1/√313
cosα=13/√313
sinα=12/√313
tanα=12/13
cosecα=√313/12
Answered by SerenaBochenek
8

Answer:

The values are

\tan \theta=\frac{12}{13}

\cos \theta=0.7345

cosec \theta=1.475

Step-by-step explanation:

Given that

\cos \theta:\sin \theta=13:12

\text{we have to find the value of }\tan\theta, \cosec \theta and \cos \theta

\text{Let }\cos \theta=13x\text{ and }\sin \theta=12x

\text{As }\sin^2 \theta+\cos^2 \theta=1

(13x)^2+(12x)^2=1

169x^2+144x^2=1

313x^2=1

x^2=\frac{1}{313}

x=0.0565

Hence,

\sin \theta=12x=12\times 0.0565=0.678

\cos \theta=13x=13\times 0.0565=0.7345

\cos \theta:\sin \theta=13:12

\frac{\cos \theta}{\sin\theta}=\frac{13}{12}

\frac{\sin \theta}{\cos\theta}=\frac{12}{13}

\tan \theta=\frac{12}{13}

cosec \theta=\frac{1}{\sin \theta}=\frac{1}{0.678}=1.475

Similar questions