(cos θ + sin θ)2 + (cos θ – sin θ)2 is equal to
Answers
Answered by
0
Answer:
This is equal to 4
Answered by
2
Let : For convenience ,I'll take theta as "x"
To find : Value of ,(cos θ + sin θ)² + (cos θ – sin θ)²
As I have taken theta = x ,
( cos x + sin x )² + ( cosx - sin x)²
Identity used :
- (a+b)² = a² + b² + 2ab
- (a-b)² = a² + b² - 2ab
- sin²x + cos²x = 1
Solution :
➠ ( cos x + sin x )² + ( cosx - sin x)²
➠ { (cos x)² + (sin x)² + 2(cos x)(sin x) } + { (cos x)² + (sin x)² - 2(cos x)(sin x) }
➠ cos²x + sin²x + 2(cos x)(sin x) + cos²x + sin²x - 2(cos x)(sin x)
➠ (cos²x + sin²x) + (cos²x + sin²x) + 2(cos x)(sin x) + - 2(cos x)(sin x)
➠ (cos²x + sin²x) + (cos²x + sin²x)
➠ 1 + 1
➠ 2
ANSWER : (cos θ + sin θ)² + (cos θ – sin θ)² = 2
Similar questions