cos square theta + sec square theta divided by cos squared theta minus sec squared theta prove that 1 + tan squared
theta divided by 1 minus tan squared theta
Answers
Given : (cos²θ + sec²θ )/((cos²θ - sec²θ ) = (1 + tan²θ) / (1 - tan²θ)
To Find : To be Proved
Solution:
let say cos θ = 1 => Sinθ = 0 tanθ = 0 , secθ = 1
LHS = (cos²θ + sec²θ )/((cos²θ - sec²θ ) = 2/0
RHS = (1 + tan²θ) / (1 - tan²θ) = 1/1 = 1
LHS ≠ RHS
Hence Given is not correct
Correct Question should be
(cos²θ + sin²θ )/((cos²θ - sin²θ ) = (1 + tan²θ) / (1 - tan²θ)
sinθ = cos θ tanθ
LHS = (cos²θ + sin²θ )/((cos²θ - sin²θ )
= (cos²θ +cos²θtan²θ )/((cos²θ -cos²θtan²θ )
= cos²θ(1 + tan²θ)/cos²θ(1 - tan²θ)
= (1 + tan²θ) / (1 - tan²θ)
= RHS
QED
(cos²θ + sin²θ )/((cos²θ - sin²θ ) = (1 + tan²θ) / (1 - tan²θ)
Learn More:
if A cos - B sin = C , prove that A sin + B cos = +- whole root (A^2 + B ...
https://brainly.in/question/8399548
If sin A + cos square A=1 then find value of cos square A + cos to the ...
https://brainly.in/question/8232487