Math, asked by nnnmmpppp, 1 year ago

cos squared theta minus 3 cos theta + 2 upon sin square theta equal to one

Answers

Answered by TPS
95

 \frac{ { \cos( \theta ) }^{2}  - 3\cos( \theta ) + 2}{ { \sin( \theta ) }^{2} }  = 1 \\  \\  { \cos( \theta ) }^{2}  - 3\cos( \theta ) + 2 = {\sin( \theta ) }^{2} \\  \\ { \cos( \theta ) }^{2}  - 3\cos( \theta ) + 2 =1 -  { \cos( \theta ) }^{2}  \\  \\ { \cos( \theta ) }^{2}  - 3\cos( \theta ) + 2  - 1 +  { \cos( \theta ) }^{2}  = 0 \\  \\ {2 \cos( \theta ) }^{2}  - 3\cos( \theta ) + 1 =0

{2 \cos( \theta ) }^{2}  - 2\cos( \theta ) -  \cos( \theta )  + 1 =0  \\  \\ 2 \cos( \theta ) [ \: \cos( \theta )  - 1] - 1[  \: \cos( \theta )  - 1] = 0

[\cos( \theta )  - 1]\ [2 \cos( \theta ) - 1]=0\\ \\ 1. \: \cos(  \theta )  - 1 = 0 \\ \cos(  \theta )  = 1 \\ \cos(  \theta )  = \cos( {0}^{o}  )  \\  \theta =  {0}^{o}


2. \: 2 \: \cos(  \theta )  - 1 = 0 \\ 2\cos(  \theta )  = 1 \\ \cos(  \theta )  = \frac{1}{2} \\ \cos(  \theta ) =   \cos( {60}^{o}  )  \\  \theta =  {60}^{o}

\text{Thus,} \:  \boxed{ \theta = 0^o}\ \ \ and\ \ \  \boxed{\theta = 60^o}

nnnmmpppp: thanku so much
TPS: Happy to help!:-)
nnnmmpppp: yah ofcourse
Answered by rahulthakur1722006
24

Answer is given below:) :)

Attachments:
Similar questions