Math, asked by parth7567, 1 year ago

cos theta/1+sin theta = 1-sin theta/cos theta​

Answers

Answered by benhurmuthu
1

Step-by-step explanation:

cos a/1+sin a=1-sin a/cos a

cross multiply

cos²a=(1+sin a)(1-sina)

cos²a=1-sin²a

cos²a=cos²a

Answered by Anonymous
1

To prove that

 \sf{ \frac{cos \: x}{1 + sin \: x} =  \frac{1 - sin \: x}{cos \: x} }  \\

Regrouping the terms,

 \sf{ \frac{cos \: x}{1 + sin \: x} -  \frac{1 - \: sin \: x}{cos \: x} = 0  } \\

LHS:

 \sf{ \frac{cos \: x}{1  +  \: sin \: x} -  \frac{1 - sin \: x}{cos \: x}  } \\  \\  =   \sf{\frac{cos {}^{2} - (1 - sin {}^{2}x)  }{(1  +  \: sin \: x)cos \: x}}  \\  \\  =   \sf{\frac{cos {}^{2}x - cos {}^{2}x  }{(1 + sin \: x)cos \: x} } \\  \\  = 0

Thus,LHS=RHS

Hence,proved

Similar questions