Math, asked by aakibmeraj, 1 year ago

cos theta by 1- tan theta + sin theta by 1-cot theta =cos theta + sin theta ​

Answers

Answered by Sharad001
53

Question :-

Prove that

 \frac{ \cos \theta}{1 -  \tan \theta}  +  \frac{ \sin \theta}{1 -  \cot \theta}  =  \cos \theta \:  +  \sin \theta \:  \\

Proof :-

Formula used :-

 \boxed{ \star }\:   \:  \:  \tan \theta \:  =  \frac{ \sin \theta}{ \cos \theta}  \\  \\   \boxed{\star } \: \:  \cot \theta \:  =  \frac{ \cos  \theta}{  \sin \theta}  \\  \\  \boxed{ \star}   \: \:  \: \sf{ {x}^{2}  -  {y}^{2}  = (x + y)(x - y)}

Explanation :-

Firstly take left hand side ( LHS)

 \rightarrow \: \frac{ \cos \theta}{1 -  \tan \theta}  +  \frac{ \sin \theta}{1 -  \cot \theta} \:  \\  \\  \rightarrow \:  \frac{ \cos \theta}{1 -  \frac{ \sin \theta}{ \cos \theta} }  +  \frac{ \sin \theta}{1 -  \frac{ \cos \theta}{ \sin \theta \: } }  \\  \:  \\  \rightarrow \:  \frac{ \cos \theta}{ \frac{ \cos \theta \:  -  \sin \theta}{ \cos \theta} }  +  \frac{ \sin \theta}{ \frac{ \sin \theta \:  -  \cos \theta \: }{ \sin \theta} }  \\  \\  \rightarrow \:  \frac{ { \cos}^{2}  \theta}{ \cos \theta \:  -  \sin \theta \: }  +  \frac{ { \sin}^{2}  \theta}{ \sin \theta \:  -  \cos \theta}  \\  \\ \sf{ taking \:common \:  negetive \: sign \: } \\  \\  \rightarrow \:  \frac{ { \cos}^{2}  \theta}{ \cos \theta -  \sin \theta}  -  \frac{ { \sin}^{2}  \theta}{ \cos \theta \:  -   \sin \theta \: }  \\  \\  \rightarrow \:  \frac{ { \cos}^{2} \theta -  { \sin}^{2}  \theta }{ \cos \theta -  \sin \:  \theta \: }  \\  \\  \because   \sf{{x}^{2}  -  {y}^{2}  = (x + y)(x - y)} \\  \therefore \:  \\   \\  \rightarrow \:  \frac{( \cos \theta -  \sin \theta)( \cos \theta \:  +  \sin \theta)}{  \cos \theta -  \sin \theta}  \\  \\  \rightarrow \:  \cos \theta \:  +  \sin \theta \:

LHS = RHS

left hand side = right hand side

hence proved : )

________________________

#answerwithquality

#BAL

Similar questions