Math, asked by ishalokesh, 11 months ago

cos theta cos 2theta cos 3 theta = 1/4​

Answers

Answered by tanmayanilmahalley
68

Answer:

Here is your answer

Step-by-step explanation:

Attachments:
Answered by talasilavijaya
2

Answer:

The value of \theta =(n \pm1)\dfrac{\pi }{3}~  \mbox{or}~(2n \pm1)\dfrac{\pi }{2}~  \mbox{for}~n=\pm0,\pm1,\pm2,...

Step-by-step explanation:

Given the trigonometric equation,  

cos \theta ~cos 2\theta~ cos 3\theta= \dfrac{1}{4}

\implies 4cos \theta ~cos 2\theta~ cos 3\theta= 1

\implies 2cos \theta ~ cos 3\theta.2~cos 2\theta= 1

Using the trigonometric relation, 2cosAcosB= cos( A +B)+cos( A -B), we get

\big(cos( \theta +3\theta)+cos( \theta -3\theta)\big).2cos2\theta= 1

\implies \big(cos( 4\theta)+cos(  -2\theta)\big).2cos2\theta= 1

\implies 2cos2\theta cos 4\theta+2cos2\theta cos 2\theta\big=1

\implies 2cos2\theta cos 4\theta+2cos^22\theta -1=0

Using the trigonometric relation, 2cos^2\theta -1=cos2\theta \implies 2cos^22\theta -1=cos4\theta, we get

2cos2\theta cos 4\theta+cos4\theta=0

\implies cos4\theta (2cos 2\theta+1)=0

\implies 2cos 2\theta+1=0 or cos4\theta =0

From cos4\theta =0 we get

\implies cos4\theta =cos\Big(2n\pi \pm\dfrac{\pi }{2}\Big)

\implies4\theta =(2n \pm1)\dfrac{\pi }{2} \implies\theta =(2n \pm1)\dfrac{\pi }{8}

Similarly from 2cos 2\theta+1=0

\implies cos 2\theta=-\dfrac{1}{2}\implies cos2\theta =cos\Big(2n\pi \pm\dfrac{2\pi }{3}\Big)

\implies 2\theta =2n\pi \pm\dfrac{2\pi }{3}\implies \theta =(n \pm1)\dfrac{\pi }{3}

Therefore, the value of \theta =(n \pm1)\dfrac{\pi }{3}~  \mbox{or}~(2n \pm1)\dfrac{\pi }{2}~  \mbox{for}~n=\pm0,\pm1,\pm2,...

Similar questions