Math, asked by lokeshyadav2406, 11 months ago

cos theta is equals to under root 3 upon 2 then find the value of 1 minus sin theta upon 1 + sec theta ​

Answers

Answered by MaheswariS
1

\underline{\textsf{Given:}}

\mathsf{cos\theta=\dfrac{\sqrt{3}}{2}}

\underline{\textsf{To find:}}

\textsf{The value of}\;\mathsf{\dfrac{1-sin\theta}{1+sec\theta}}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{cos\theta=\dfrac{\sqrt{3}}{2}}

\implies\mathsf{\theta=30^{\circ}}

\textsf{Then,}

\mathsf{sin\,\theta=sin\,30^{\circ}=\dfrac{1}{2}}

\textsf{Now}

\mathsf{\dfrac{1-sin\theta}{1+sec\theta}}

\mathsf{=\dfrac{1-sin\theta}{1+\dfrac{1}{cos\theta}}}

\mathsf{=\dfrac{1-\dfrac{1}{2}}{1+\dfrac{2}{\sqrt{3}}}}

\mathsf{=\dfrac{\dfrac{1}{2}}{1+\dfrac{2}{\sqrt{3}}}}}

\mathsf{=\dfrac{\dfrac{1}{2}}{\dfrac{\sqrt{3}+2}{\sqrt{3}}}}

\mathsf{=\dfrac{\sqrt{3}}{2(2+\sqrt{3})}}

\textsf{To rationalize the denominator}

\mathsf{=\dfrac{\sqrt{3}}{2(2+\sqrt{3})}{\times}\dfrac{2-\sqrt{3}}{2-\sqrt{3}}}

\mathsf{=\dfrac{\sqrt{3}(2-\sqrt{3})}{2^2-\sqrt{3}^2}}

\mathsf{=\dfrac{\sqrt{3}(2-\sqrt{3})}{4-3}}

\mathsf{=\dfrac{\sqrt{3}(2-\sqrt{3})}{1}}

\mathsf{=2\sqrt{3}-3}

\underline{\textsf{Answer:}}

\textsf{The value of}\;\mathsf{\dfrac{1-sin\theta}{1+sec\theta}\;\textsf{is}\;\mathsf{2\sqrt{3}-3}}

Find more:

If sinA+sinB=C,cosA+cosB=D,then value of sin(A+B)=

​https://brainly.in/question/11128542

Similar questions