Cos theta minus sin theta plus one by cos theta plus sin theta minus one . Prove that is equal to cosectheta plus cot theta
Answers
(Cosθ - Sinθ + 1)/(Cosθ + Sinθ - 1) = Cosecθ + Cotθ
Step-by-step explanation:
(Cosθ - Sinθ + 1)/(Cosθ + Sinθ - 1) = Cosecθ + Cotθ
LHS
= (Cosθ - Sinθ + 1)/(Cosθ + Sinθ - 1)
= (Cosθ + (1 - Sinθ))/(Cosθ - (1 - Sinθ))
Multiplying & Dividing by (Cosθ + (1 - Sinθ)
= (Cos²θ + 1 + Sin²θ -2Sinθ + 2Cosθ(1 - Sinθ))/( Cos²θ - (1 + Sin²θ - 2Sinθ))
using Cos²θ + Sin²θ = 1
= (2 -2Sinθ + 2Cosθ(1 - Sinθ))/( ( Cos² - (Cos²θ + Sin²θ + Sin²θ - 2Sinθ))
= (2(1 - Sinθ) + 2Cosθ(1 - Sinθ))/(2Sinθ - 2Sin²θ)
= (2 + 2Cosθ)(1 - Sinθ)/(2Sinθ(1 - Sinθ))
= 2(1 + Cosθ)(1 - Sinθ)/(2Sinθ(1 - Sinθ))
= (1 + Cosθ)/Sinθ
= 1/Sinθ + Cosθ/Sinθ
= Cosecθ + Cotθ
= RHS
Learn more:
1/secx-tanx -1/cos = 1/cosx - 1/secx+tanx
https://brainly.in/question/8160834
If sin θ + cos θ = 2 , then evaluate : tan θ + cot θ - Brainly.in
https://brainly.in/question/7871635