Math, asked by sahildhanrajani377, 11 months ago

Cos theta plus sin theta equals root 2 cos theta

Find: cos theta minus sin theta

Answers

Answered by warylucknow
0

Answer:

The value of Cos\theta - Sin\theta is \sqrt{2}Sin\theta.

Step-by-step explanation:

It is provided that: Cos\theta + Sin\theta=\sqrt{2} Cos\theta.

Square both sides of the above equation and solve as follows:

(Cos\theta + Sin\theta)^{2}=(\sqrt{2} Cos\theta)^{2}\\Cos^{2}\theta+Sin^{2}\theta+2Cos\theta Sin\theta=2Cos^{2}\theta\\2Cos\theta Sin\theta=Cos^{2}\theta-Sin^{2}\theta

Now compute the value of Cos\theta - Sin\theta as follows:

(Cos\theta - Sin\theta)^{2}=Cos^{2}\theta+Sin^{2}\theta-2Cos\theta Sin\theta\\=Cos^{2}\theta+Sin^{2}\theta-(Cos^{2}\theta-Sin^{2}\theta)\\=Cos^{2}\theta+Sin^{2}\theta-Cos^{2}\theta+Sin^{2}\theta\\=2Sin^{2}\theta\\(Cos\theta - Sin\theta)=\sqrt{2Sin^{2}\theta} \\=\sqrt{2}Sin\theta

Thus, the value of Cos\theta - Sin\theta is \sqrt{2}Sin\theta.

Answered by swaroopbevinal
0

Answer: (1) √2 cos θ

Solution:

Given,

cos θ – sin θ = √2 sin θ

Squaring on both sides,

cos2θ + sin2θ – 2 sin θ cos θ = 2 sin2θ

1 – 2 sin θ cos θ = 2 sin2θ

2 sin θ cos θ = 1 – 2 sin2θ(i)

Now,

cos θ + sin θ

Squaring this expression,

(cos θ + sin θ)2 = cos2θ + sin2θ + 2 sin θ cos θ

= 1 + 1 – 2 sin2θ {from (i)}

= 2 – 2 sin2θ

= 2(1 – sin2θ)

= 2 cos2θ

Therefore, cos θ + sin θ = √2 cos θ

Similar questions