evaluate lim x-> 0
(4 sin x - 9x cosx) / (3x² - 5 tanx)
Answers
value of given limit is 1
evaluate Lim (x → 0) (4sinx - 9x cosx)/(3x² - 5tanx)
putting x = 0,
(4 × sin0 - 9 × 0 × cos0)/(3.0² - 5tan0) = 0/0 so it is the form of limit.
we know, lim(x→0) = sinx/x = 1 and lim(x →0) = tanx/x = 1 let's apply these.
Lim(x→0) {4(sinx/x) × x - 9xcosx}/{3x² - 5(tanx/x)x}
= lim(x→0) (4x - 9x cosx)/(3x² - 5x)
= lim(x →0) (4 - 9cosx)/(3x - 5)
putting x = 0,
= (4 - 9cos0)/(3 × 0 - 5)
= (4 - 9)/(-5)
= -5/-5
= 1
also read similar questions : Lim x tends to 0. Tanx/((1-cosx)^2)^1/3)
https://brainly.in/question/1258455
lim x->0[(sin(a+x)+sin(a-x)-2sina)/xsinx]
https://brainly.in/question/3177805
The value of \lim_{x \to 0} \dfrac{4\sin x - 9x\cos x}{3x^2- \tan x} = 1
Step-by-step explanation:
We have,
\lim_{x \to 0} \dfrac{4\sin x - 9x\cos x}{3x^2- \tan x}
To find, the value of \lim_{x \to 0} \dfrac{4\sin x - 9x\cos x}{3x^2- \tan x} = ?
∴ \lim_{x \to 0} \dfrac{4\sin x - 9x\cos x}{3x^2- \tan x} ( \dfrac{0}{0} form)
Dividing numerator and denominator by x, we get
=\lim_{x \to 0} \dfrac{\dfrac{4\sin x - 9x\cos x}{x} }{\dfrac{3x^2- \tan x}{x}}
=\lim_{x \to 0} \dfrac{4\dfrac{\sin x }{x}- 9\cos x }{3x-5\dfrac{\tan x}{x}}
We know that,
\lim_{x \to 0} \dfrac{\sin x}{x}=1 and
\lim_{x \to 0} \dfrac{\tan x}{x}=1
=\lim_{x \to 0} \dfrac{4(1)- 9\cos x }{3x-5(1)}
Put x = 0, we get
=\dfrac{4- 9\cos 0 }{3(0)-5}
=\dfrac{4- 9(1) }{3(0)-5}
=\dfrac{-5 }{-5}
= 1
Thus, the value of \lim_{x \to 0} \dfrac{4\sin x - 9x\cos x}{3x^2- \tan x} = 1