Math, asked by mehannashaheer12, 10 months ago

cos(-theta) /sin(90+theta)​

Answers

Answered by rishu6845
6

Answer:

1

Step-by-step explanation:

To find ---> value of Cos(-θ)/Sin(90°+θ)

------------

Solution --->First we find value of Cos(-θ)

------------- , (-θ) lies in fourth quadrant in which Cos is positive and do not change in other trigonometric ratios so

Cos (-θ)= Cosθ

Now we find value of Sin(90°+θ) ,(90°+θ) lies in second quadrant in which Sin has positive sign and sin changes in to Cos

So Sin(90°+ θ)=Cosθ

Now retuning to original problem

Cos(-θ) Cosθ

=> ---------------------- =-------------

Sin (90°+θ) Cosθ

Cosθ Cancel out from numerator and denominator

Cos(-θ)

=> ------------------- = 1

Sin(90°+θ)

Additional information---->

------------------------------------

1)Sin(-θ)=-Sinθ

2)tan(-θ)=-tanθ

3)Cot(-θ)=-Cotθ

4)Cosec(-θ)=-Cosecθ

5)Sec(-θ)=Secθ

6)Cos(90°+θ)=-Sinθ

7)tan(90°+θ)=-Cotθ

8)Sec(90°+θ)=-Cosecθ

9)Cosec(90°+θ)=Secθ

10)Cot(90°+θ)=-tanθ

Answered by Aɾꜱɦ
1

<font color =“orange”>

{ \huge \bf{ \mid{ \overline{ \underline{Answer}}} \mid}}

<body bgcolor= “purple” ><fontcolor=“white”>

1

#answerwithquality #bal

Similar questions