cos(-theta) /sin(90+theta)
Answers
Answer:
1
Step-by-step explanation:
To find ---> value of Cos(-θ)/Sin(90°+θ)
------------
Solution --->First we find value of Cos(-θ)
------------- , (-θ) lies in fourth quadrant in which Cos is positive and do not change in other trigonometric ratios so
Cos (-θ)= Cosθ
Now we find value of Sin(90°+θ) ,(90°+θ) lies in second quadrant in which Sin has positive sign and sin changes in to Cos
So Sin(90°+ θ)=Cosθ
Now retuning to original problem
Cos(-θ) Cosθ
=> ---------------------- =-------------
Sin (90°+θ) Cosθ
Cosθ Cancel out from numerator and denominator
Cos(-θ)
=> ------------------- = 1
Sin(90°+θ)
Additional information---->
------------------------------------
1)Sin(-θ)=-Sinθ
2)tan(-θ)=-tanθ
3)Cot(-θ)=-Cotθ
4)Cosec(-θ)=-Cosecθ
5)Sec(-θ)=Secθ
6)Cos(90°+θ)=-Sinθ
7)tan(90°+θ)=-Cotθ
8)Sec(90°+θ)=-Cosecθ
9)Cosec(90°+θ)=Secθ
10)Cot(90°+θ)=-tanθ
1
#answerwithquality #bal