(cos theta + sin theta)²+(cos theta-sin theta)² is equal to
Answers
Answered by
3
Step-by-step explanation:
According to the Q,
>> (sinθ + cosθ)² + (sinθ - cosθ)²
Using Formula (a + b)² = a² + b² + 2ab
and (a - b)² = a² + b² - 2ab:
>> (sin²θ + cos²θ + 2sinθcosθ) + (sin²θ + cos²θ - 2sinθcosθ)
>> sin²θ + cos²θ + 2sinθcosθ + sin²θ + cos²θ - 2sinθcosθ
We know that (sin²θ + cos²θ) = 1 :
>> 1 + 1 + 2sinθcosθ - 2sinθcosθ
>> 1 + 1
>> 2
Answered by
6
Answer:
(cos²∅+sin²∅)+2cos∅sin∅+(cos²∅+sin²∅) -2sin∅cos∅
= 1+1
=2
❤⚡⚡
Similar questions