Math, asked by vkkori24, 3 months ago

(cos theta + sin theta)^2 + ( cos theta - sin theta)^2 is equal to​

Answers

Answered by manojpandey1908
2

Answer:

2

Step-by-step explanation:

(cosθ+sinθ)^2 +(cosθ−sinθ)^2

=(cos^2  θ+sin^2  θ + 2sinθcosθ)+(cos^2  θ+sin ^ 2 θ−2sinθcosθ)

=2(cos^ 2 θ+sin^ 2 θ)

=2(1)=2

Answered by shriyathakur423
29

{\cos0 \:  +  \sin0 =  \sqrt2 \cos0}

{squaring \: on \: both \: the \: sides \: we \: get}

{ cos^{2} + sin^{2}0 + 2 sin0 cos0 = 2\cos^{2}0 }

 \cos^{2}0 -  \sin0 = 2 \cos0 \sin0

( \cos0 +  \sin0)( \cos0 - \sin0) = 2 \cos0 \sin0

\sqrt{2} \cos0( \cos0 -  \sin0) = 2 \cos0 \sin0

(given \: cos0 + sin0 =  \sqrt{2}cos0)

\infty  \: cos0 - sin0 =  \sqrt{2}sin0

(hence \: proved)

Similar questions