Math, asked by rutkar3672, 1 year ago

Cos theta + sin theta equal to root 2 cos theta then show that cos theta minus sin theta equals to root 2 sin theta

Answers

Answered by BEJOICE
106
See the attachment for detail solution
Hope it will help you
Attachments:
Answered by pinquancaro
42

Answer and explanation:

Given : \cos \theta +\sin\theta=\sqrt2\cos\theta

To show : \cos\theta-\sin\theta=\sqrt{2}\sin\theta

Solution :

We have given,

\cos \theta +\sin\theta=\sqrt2\cos\theta

\sin\theta=\sqrt2\cos\theta-\cos \theta

\sin\theta=\cos\theta(\sqrt2-1)

\cos\theta=\frac{\sin\theta}{\sqrt2-1}

\cos\theta=\frac{\sin\theta}{\sqrt2-1}\times \frac{\sqrt2+1}{\sqrt+1}

\cos\theta=\frac{(\sqrt2+1)\sin\theta}{(\sqrt2)^2-1^2}

\cos\theta=\frac{(\sqrt2+1)\sin\theta}{2-1}

\cos\theta=(\sqrt2+1)\sin\theta

\cos\theta=\sqrt2\sin\theta+\sin\theta

\cos\theta-\sin\theta=\sqrt2\sin\theta

We get the required result.

Similar questions