Math, asked by ashutoshtiwari006, 10 months ago

cos X =-1/2 , X lies in third quadrant

Attachments:

Answers

Answered by abirooprp2003
0

Answer:

cos x -1/2 x lies in the third quadrant

Step-by-step explanation:

Answered by amitkumar44481
33

AnsWer :

tan x = √3.

To FinD :

The value of tan x.

SolutioN :

 \tt  Cos\, x = -\dfrac{1}{2} \: , x \: lies  \: in \:  third \:  Quadrant.

We know, that.

  • Sin²A + Cos²A = 1.

 \tt  \longmapsto  {sin}^{2} x +  {cos}^{2}  x= 1.

 \tt  \longmapsto  {sin}^{2} x +  {  \bigg(\dfrac{1}{2} \bigg) }^{2}  = 1.

 \tt  \longmapsto  {sin}^{2} x = 1 -  \dfrac{1}{4}

 \tt  \longmapsto  {sin}^{2} x =   \dfrac{4 - 1}{4}

 \tt  \longmapsto  {sin}^{2} x =   \dfrac{3}{4}

 \tt  \longmapsto  {sin} x =    \pm \dfrac{ \sqrt{3} }{2}

★ Now, given x lies on Quadrant third, so

  • Sin x = - √3 / 2.
  • Cos x = - 1 / 2.

★ Now, Let's Find the Tan x = ?

 \tt  \longmapsto  \dfrac{Sin x }{Cos x } = tan x

 \tt  \longmapsto  \dfrac{-\frac{\sqrt{3}}{2}}{- \frac{1}{2}} = tan x

 \tt  \longmapsto  tan \,x =\sqrt{ 3}.

Therefore, the value of tan x is √3.

Similar questions