Math, asked by Shilpa00, 5 months ago

[ Cos x Log ( 2y-8) + 1/x ] dx + sin x /(y-4) dy = 0

given y(1)=9/2


please solve this differential equation ​

Answers

Answered by uttamchintale57
2

Step-by-step =sinxlog(2y−8)+logx=C

Answered by AbhinavRocks10
65

Given :

\bullet\ \; \sf y=e^x(sin\ x+cos\ x)

To Prove :

\bullet\ \; \sf \dfrac{d^2y}{dx^2}-2 \dfrac{dy}{dx}+2y=0

Proof :

\sf y=e^x(sin\ x+cos\ x)

On differentiating wrt 'x' on b.s , we get,

\begin{gathered}\\ \to \sf \dfrac{dy}{dx}=e^x(cos\ x-sin\ x)+(sin\ x+cos\ x) e^x\\ \end{gathered}

  • (cos x−sin x)+(sin x+cos x )

\begin{gathered}\\ \to \sf \dfrac{dy}{dx}=e^x.cos\ x-e^x.sin\ x+e^x .sin\ x+e^x . cos\ x\\\end{gathered}

\to \sf \dfrac{dy}{dx}=2 e^x.cos\

Again differentiating b.s wrt 'x' , we get ,

\to \sf \dfrac{d^2y}{dx^2}=-2e^x.sin\ x+2e^x.cos\ x...(1)

Now

\sf 2 \dfrac{dy}

\to \sf 2( 2e^x.cos\ x )

So ,

\sf \to 2\ \dfrac{dy}{dx}=4e^x.cos\ x...(2)

Now 2y

\to \sf 2(e^x(sin\ x+cos\ x))

\to \sf 2(e^x.sin\ x+e^x.cos\ x)

So ,

\to \sf 2y=2e^x.sin\ x+2e^x .cos\ x

Now our required ,

LHS

:\implies \sf \dfrac{d^2y}{dx^2}-2\ \dfrac{dy}{dx}

\begin{gathered}\\ :\implies \sf -2e^x.sin\ x+2e^x.cos\ x-(4e^x.cos\ x)+2e^x.sin\ x+2e^x.cos\ x\\\end{gathered}

:\implies \sf 4e^x.cos\ x-4e^x.cos\

:\implies \sf 0\ \; \purple{\bigstar}

\orange{\bigstar}\sf Hence\; proved  \green{\bigstar}

Similar questions