Cos x = sin 2x value of x
Answers
Answered by
1
Answer:
We need
sin2x=2sinxcosx
Therefore,
sin2x
=cosxsin2x−cosx=0 2sinxcosx−cosx=0
cosx(2sinx−1)=0
So,
{cosx=0
2sinx−1=0⇔
,
{
cos
x
=
0
sin
x
=
1
2
⇔
,
{
x
=
π
2
3
2
π
x
=
1
6
π
5
6
π
∀
x
∈
[
0
,
2
π
]
The solutions are
S
=
{
1
2
π
,
3
2
π
,
1
6
π
,
5
6
π
}
graph{sin(2x)-cosx [-1.622, 9.475, -2.51, 3.04]}
Answered by
1
Answer:
The solutions are S={12π,32 π,16π,56π}. Explanation: We need. sin2x=2sin xcosx. Therefore,. sin2x=cosx. sin2x−cosx=0.
socratic
Cos x = sin 2x value of x
Similar questions