Math, asked by MrChatterjee, 9 months ago

( cos x - sin x )^ 2 = 1- sin 2 x​

Answers

Answered by ujwaldubey1433
0

Answer:

It depends on how far back you need to go in your proof.

If you can use:

sin

2

(

x

)

+

cos

2

(

x

)

=

1

(which can be derived from the Pythagorean Theorem)

and

sin

(

2

x

)

=

2

sin

(

x

)

cos

(

x

)

(the Double Angle Formula for sin, which is considerably more complicate to prove)

then the requested proof is fairly simple:

(

sin

(

x

)

+

cos

(

x

)

)

2

=

sin

2

(

x

)

+

2

sin

(

x

)

cos

(

x

)

+

cos

2

(

x

)

=

[

sin

2

(

x

)

+

cos

2

(

x

)

]

+

2

sin

(

x

)

cos

(

x

)

=

1

+

sin

(

2

x

)

Answered by kushalchauhan07
2

LHS= \: (cos \: x - sin \: x)^{2}

 a^{2} + {b}^{2} - 2a\times b =(a - b)^{2}

cos \: x^{2} + sin \:  {x}^{2} - 2cos \: x \times sin \: x

sin  \: {x}^{2} + cos \:  {x}^{2}  - 2sinx \times cos \: x

1  - sin2x = RHS\:  \:  \: ∴(sin  \: {x}^{2} + cos \:  {x}^{2}  = 1)

 \  \:  \:  \:  \:  \:∴(2sin \: x \times cos \: x = sin \: 2x)

Similar questions