cos1°×cos2°×cos3°....cos89°
Answers
Answered by
24
cos1°=cos(90-89)°=sin89°
cos89°=cos(90-1)=sin1°
we make pair of sine series
(sin1°sin89°)(sin2°sin88).......(sin44°sin46°)(sin45)
= 1/√2(sin1°sin89°)(sin2°sin88°)....(sin44°sin46°)
cos89°=cos(90-1)=sin1°
we make pair of sine series
(sin1°sin89°)(sin2°sin88).......(sin44°sin46°)(sin45)
= 1/√2(sin1°sin89°)(sin2°sin88°)....(sin44°sin46°)
Arunstudent:
why Sin45° for one time?
Answered by
9
Step-by-step explanation:
To find the value of cos1°×cos2°×cos3°....cos87°×cos88°×cos89°
As we know that
cos1°×cos2°×cos3°....cos(90°-3°)×cos(90°-2°)×cos(90°-1°)
cos1°×cos2°×cos3°...cos 44°×cos45°×sin44°...sin 3°×sin 2°× sin1°
cos1°sin1°×cos2°sin2°×
cos3°sin3°×...cos44°sin44°×cos 45°
we know that
2sin x cos x= sin 2x
To convert the expression,we have to multiply and divide 2 ,44 times
Hope it helps you
Similar questions
English,
8 months ago
CBSE BOARD X,
8 months ago
English,
1 year ago
Math,
1 year ago
Science,
1 year ago