cos10 cos50 cos70-sin10 sin50 sin70
Answers
HELLO DEAR,
GIVEN:- cos10cos50cos70 - sin10sin50sin70
now, we know:- 2cosa.cosb = Cos(a + b) + cos(a - b)
solving, cos10cos50cos70
=> 1/2{2cos70 + cos10} cos50
=> 1/2 {cos(70 + 10) + cos(70 - 10)} cos50
=> 1/2 {cos80 + cos60} cos50
=> 1/2 {cos80 * cos50} + 1/2{cos60 * cos50}
=> 1/4 {cos(80 + 50) + cos(80 - 50)} + 1/4*cos50
=> 1/4 {cos130 + cos30} + 1/4cos50
=> 1/4 {cos130 + √3/2} + 1/4cos50
=> 1/4 {cos130 + √3/2} + 1/4cos50
=> 1/4 {cos(180 - 50) + √3/2} + 1/4cos50
=> 1/4(-cos50) + √3/8 + 1/4cos50
=> √3/8
similarly, sin10sin50sin70
=> sin10sin50sin70
=> 1/2(2sin10sin50sin70)
we know:- [ 2sinAsinB = cos (A-B) - cos (A+B)]
So,
1/2(2sin10sin50sin70)
=> 1/2[sin10{cos20 - cos120}]
[ cos 120 = cos (90 + 30) = 1/2]
So, 1/2 {sin10(cos20 +1/2)}
=> 1/2sin10cos20 +1/4sin10
=> 1/4(2sin10cos20) + 1/4sin10
As, [2sinAcosB = sin(A + B) - sin(A - B)]
= 1/4 (sin 30 - sin10) + 1/4sin10
= 1/4 sin30
= 1/8
hence, cos10cos50cos70 - sin10sin50sin70
=> √3/8 - 1/8
=> (√3 - 1)/8. <=answer
Answer:
PLEASE CHECK YOUR ANSWER CAREFULLY
HOPE IT HELPS YOU