Math, asked by shivangpandey73, 9 months ago

solve the problem..........​

Attachments:

Answers

Answered by usharmavn
1

Answer:

ANSWER = 0

Step-by-step explanation:

\frac{(sinA - sinB)(sinA+sinB) + (cosA - cosB)(cosA+cosB)}{(sinA + sinB)(cosA+cosB)}

\frac{sinA^{2} + cosA^{2} - (sinB^{2} + cosB^{2})  }{(sinA+sinB)(cosA + cosB)}

now we know that sinA^2 + cosA^2 = 1 (trigonometric identity)

\frac{1 -1   }{(sinA+sinB)(cosA + cosB)}

ANSWER = 0

Hence proved

CHEERS MATE, PLEASE DO MARK  BRAINLIEST

Answered by VersonImmanuel
0

[sin^2A-sin^2B+cos^2A-cos^2B]÷[cosA+cosB(sinA+sinB)]

=[1-(sin^2B+cos^2B)]÷[cosA+cosB(sinA+sinB)]

=[1-1]÷[cosA+cosB(sinA+sinB)]

=[0]÷[cosA+cosB(sinA+sinB)]

=0

Similar questions