Cos100°Cos40°+Sin100°Sin40°
Answers
hope it helps,
please mark as brainliest.
Step-by-step explanation:
Given :-
Cos100°Cos40°+Sin100°Sin40°
To find :-
Find the value of Cos100°Cos40°+Sin100°Sin40°?
Solution :-
Method-:1-
Given that
Cos100°Cos40°+Sin100°Sin40°
It is in the form of Cos A Cos B + Sin A Sin B
Where A = 100° and B = 40°
We know that
Cos (A-B) = Cos A Cos B + Sin A Sin B
=> Cos100°Cos40°+Sin100°Sin40°
=> Cos (100°-40°)
=> Cos 60°
=> 1/2
Method-2:-
Given that
Cos100°Cos40°+Sin100°Sin40°
=> Cos 100° Cos (90°-50°) + Sin 100°Sin(90°-50°)
We know that
Cos (90°-A) = Sin A
Sin (90°-A) = Cos A
=> Cos 100° Sin 50° + Sin 100° Cos 50°
=> Sin 50° Cos 100° + Cos 50° Sin 100°
It is in the form of Sin A Cos B + Cos A Sin B
Where , A = 50° and B = 100°
We know that
Sin (A+B) = Sin A Cos B + Cos A Sin B
=> Sin 50° Cos 100° + Cos 50° Sin 100°
=> Sin (50°+100°)
=> Sin 150°
=> Sin (90°+60°)
We know that
Sin (90°+A) = Cos A
=> Cos 60°
=> 1/2
Answer:-
The value of Cos100°Cos40°+Sin100°Sin40° is 1/2
Used formulae:-
→ Cos (90°-A) = Sin A
→ Sin (90°-A) = Cos A
→ Cos (A-B) = Cos A Cos B + Sin A Sin B
→ Sin (A+B) = Sin A Cos B + Cos A Sin B
→ Sin (90°+A) = Cos A