Math, asked by dhirendraaditya6718, 1 year ago

Cos15 - sin15=1/under root 2

Answers

Answered by sridhar465
1
hope this answer helps you
Attachments:
Answered by pinquancaro
3

Answer and Explanation:

To prove : \cos 15^\circ-\sin 15^\circ=\frac{1}{\sqrt{2}}

Proof :

Taking LHS,

LHS=\cos 15^\circ-\sin 15^\circ

We can write,

LHS=\cos (45-30)^\circ-\sin (45-30)^\circ

Applying formula,

\cos (A-B)=\cos A\cos B+\sin A\sin B

\sin (A-B)=\sin A\cos B-\cos A\sin B

LHS=\cos 45\cos 30+\sin 45\sin 30-(\sin 45\cos 30-\cos 45\sin 30)

We know,

\cos 45=\frac{1}{\sqrt{2}}~~~~~~~~~\sin 45=\frac{1}{\sqrt{2}}\\\\\cos 30=\frac{\sqrt{3}}{2}~~~~~~~~~\sin 30=\frac{1}{2}

Substituting the values,

LHS=(\frac{1}{\sqrt{2}})(\frac{\sqrt{3}}{2})+(\frac{1}{\sqrt{2}})(\frac{1}{2})-((\frac{1}{\sqrt{2}})(\frac{\sqrt{3}}{2})-(\frac{1}{\sqrt{2}})(\frac{1}{2}))

LHS=(\frac{\sqrt3+1}{2\sqrt2})-(\frac{\sqrt3-1}{2\sqrt2})

LHS=\frac{3-1}{2\sqrt2}

LHS=\frac{2}{2\sqrt2}

LHS=\frac{1}{\sqrt2}

LHS=RHS

Hence proved.

Similar questions