Math, asked by Biswojitbal, 10 months ago

cos² 48⁰ - sin² 12⁰ = √5 + 1/8​

Answers

Answered by RvChaudharY50
25

Qᴜᴇsᴛɪᴏɴ :-

Prove :- cos² 48⁰ - sin² 12⁰ = √5 + 1/8

Fᴏʀᴍᴜʟᴀ ᴜsᴇᴅ :-

  • cos²A - sin²B = cos(A + B) * cos(A - B)
  • cos36° = (√5 + 1)/4 .
  • cos30° = (1/2)

Sᴏʟᴜᴛɪᴏɴ :-

Solving LHS,

→ cos²48° - sin²(12°)

Let A = 48° and B = 12° . Than, comparing it with cos²A - sin²B we get,

→ cos(48+12) * cos(48 - 12)

→ cos60° * cos36°

Putting Both values Now, we get ,

→ (1/2) * (√5+1)/4

→ (√5 + 1)/8 = RHS . (Proved).

Answered by Anonymous
71

 \huge \tt \underline \orange {Answer}

 \bf \pink{ Given, }

   {\boxed{\huge \tt \red{Using \cos^2 48  \degree -  \sin ^{2} 12 }}}

 \tt \orange{Using : } \:   \rm \purple{ \cos( A +  B ) \:  cos (A -  B) = cos ^{2}A - sin ^{2} B}

 \bf \green{ \implies cos(48 + 12) \: cos(48 - 12) }

 \bf \green{ \implies cos(60) \: cos(36) }

 \bf \green{ \implies  \frac{1}{2} \:  . \: cos(36) }

 \huge \sf  \pink{Now,}

 \bf \orange{cos36  \degree =  \frac{ \sqrt{5}  + 1}{8}   }

 \bf \orange { \implies  \frac{1}{2} \:  . \: \frac{ \sqrt{5}  + 1}{4}  }

 \bf \orange{ Therefore, \: proved \:  that :- }

  \longrightarrow \bf \green {cos ^{2} 48 - sin^{2}  12 \degree =  \frac{ \sqrt{5}  + 1}{8}   }

Attachments:
Similar questions