Math, asked by vibhanshu8441, 10 months ago

Solve this by completing square method=find its roots
root3x²+10x+7root3​

Answers

Answered by hukam0685
5

Step-by-step explanation:

Solve by this by completing square method

 \sqrt{3}  {x}^{2} + 10x + 7 \sqrt{3} = 0   \\  \\ divide \: eq \: by \:  \sqrt{3}  \\  \\  {x}^{2}  +  \frac{10}{ \sqrt{3} }x + 7  = 0\\  \\ take \:  7 \: to \: other \: side \\  \\  {x}^{2}  +  \frac{10}{ \sqrt{3} }x =  - 7  \\  \\  {(x)}^{2}  + 2(x)( \frac{5}{ \sqrt{3} } ) +  {( \frac{5}{ \sqrt{3} } )}^{2}  =  - 7 +  {( \frac{5}{ \sqrt{3} }) }^{2}  \\  \\ ( {x +  \frac{5}{ \sqrt{3} }) }^{2}  =  - 7 +  \frac{25}{3}  \\  \\ ( {x +  \frac{5}{ \sqrt{3} }) }^{2}  =  \frac{ - 21 + 25}{3}  \\  \\ ( {x +  \frac{5}{ \sqrt{3} }) }^{2}  =  \frac{4}{3}  \\  \\ ( {x +  \frac{5}{ \sqrt{3} }) }^{2}   = ( { \frac{2}{ \sqrt{3} }) }^{2}  \\  \\ ( {x +  \frac{5}{ \sqrt{3} }) }^{2}   -  ( { \frac{2}{ \sqrt{3} }) }^{2} = 0 \\  \\  \because \:  {a}^{2}  -  {b}^{2}  = (a + b)(a - b)\\  \\ (x +  \frac{5}{ \sqrt{3} }  +  \frac{2}{ \sqrt{3} } )(x +  \frac{5}{ \sqrt{3} }   -  \frac{2}{ \sqrt{3} } ) = 0 \\  \\ (x +  \frac{7}{ \sqrt{3} } )(x +  \frac{3}{ \sqrt{3} } ) = 0 \\  \\ roots \: are \\  \\ x =  -  \frac{7}{ \sqrt{3} }\:or\:x= -\frac{7\sqrt{3} }{3}\: \\  \\ and \\  \\ x =  \frac{ - 3}{ \sqrt{3} }\:or\:x= -\sqrt{3} \\  \\

Hope it helps you.

Similar questions
Math, 5 months ago