cos20+cos100+cos140=cos52+cos68+cos172
Answers
Answered by
0
cos(α±β)=cosαcosβ∓sinαsinβcos(α±β)=cosαcosβ∓sinαsinβ
and
cos(180∘−α)=−cosα.cos(180∘−α)=−cosα.
Hence
cos52∘+cos68∘+cos172∘
=cos(60∘−8∘)+cos(60∘+8∘)+cos(180∘−8∘)=2cos60∘cos8∘+(−cos8∘)=2⋅12⋅cos8∘−cos8
=0
and
cos(180∘−α)=−cosα.cos(180∘−α)=−cosα.
Hence
cos52∘+cos68∘+cos172∘
=cos(60∘−8∘)+cos(60∘+8∘)+cos(180∘−8∘)=2cos60∘cos8∘+(−cos8∘)=2⋅12⋅cos8∘−cos8
=0
Similar questions