Cos20+cos40+cos60-4cos10cos20cos30
Answers
Answered by
1
Answer:
20+40+60-4+10+20+30
=176
Answered by
11
Answer:
√3(√3+1)/2
Step By Step Explaination:
cos20+ cos40+ cos60 – [4cos10cos20cos30 ](2sin10)/(2sin10)
cos20+ cos40 can be written as 2cos30cos10.....by sum to product rule.
We get,
2cos30cos10 + cos60 –[ 4(2sin10cos10)cos20cos30]/2sin10
2(√3/2)cos10 + (1/2) – [4(sin20)cos20cos30]/2sin10
√3cos10 +1/2 – [2(2sin20cos20)cos30]/2sin10
Taking LCM,
[ √3∙2sin10cos10+ sin10 – 2(sin40)cos30 ]/2sin10
[ √3sin20 + sin10 – 2sin40(√3/2) ]/2sin10
[ √3sin20 – √3sin40 +sin10 ]/2sin10
[ √3(sin20 – sin40) +sin10 ]/2sin10
[ √3( 2sin10cos30 + sin10 ]/2sin10
[ √3(√3sin10 + sin10) ]/2sin10
√3sin10(√3 +1)/2sin10
FOLLOW ME☺☺
Similar questions